

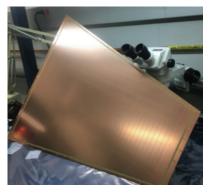
iTPC Project Overview

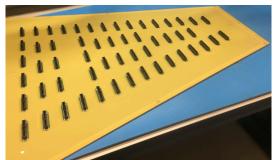
Flemming Videbæk BNL

Key points to be conveyed

- What is the project
- What are the production plans
- Management
- Schedule & progress
- Discussion of the run-18 and installation
- KPP/UPP

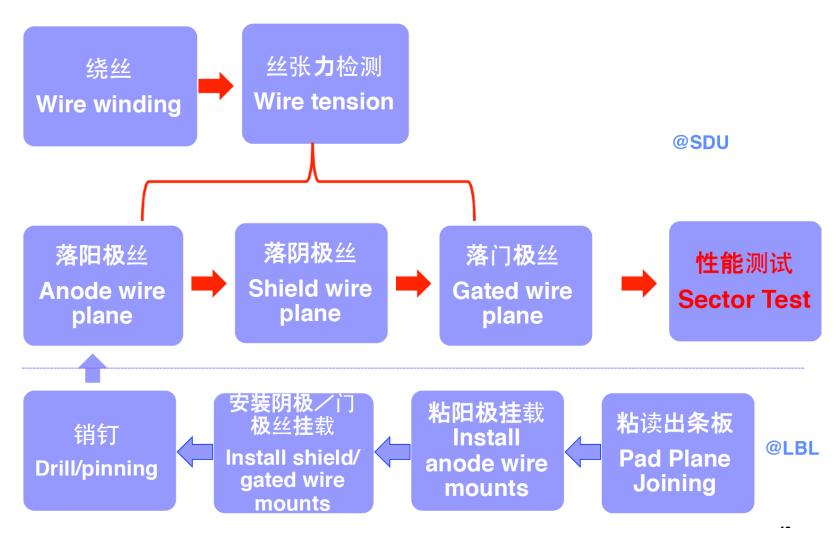
Upgrade key elements


- Replacement of Inner Sectors (24)
 - Increase #padrows from 13 to 40.
 - Complete geometrical coverage
 - Mechanical Sector (Strongbacks)
 - Joining of padplanes with strongbacks
 - Assembly of MWPC on strongbacks
- This will improve
 - eta coverage from 1.0 to 1.5
 - $-P_t$ coverage from 0.20 -> 0.06 GeV/c
 - dE/dx



Strongback

- Strongback, commercial fabrication
- Padplane, same # even/odd per connector as per recommendation



MWPC production

Electronics

- Electronics to handle increase of channels
 - Similar FEE layout and foot print as for existing DAQ1000 cards
 - Double #channels per FEE
 - RDO modules
 - DAQ PCs

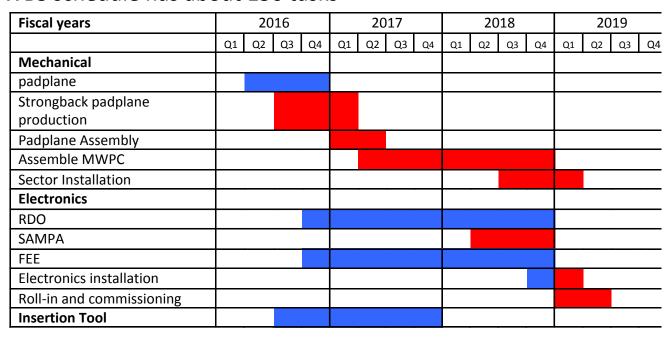
Installation

- Installation in STAR
 - Replace existing inner 24 sector with new
 - Involves removing all electronics service, remove and insert new, reinstall services
 - Mount new electronics

Commissioning

Timeline

- Proposal several years ago (Late 2011)
- Internal STAR review Feb 5, 2015
- Proposal submitted and Physics Review by PAC in June 2015
- Follow-up discussion with ALD sufficient to proceed to technical review
- TDR completed and submitted to ALD November
- Risk assessment requested by ALD for TPC and iTPC submitted early December
- Directors review January; approval to proceed granted in February due to need to acquire long lead items (strongback, padplanes, setting contact with LBNL) ahead of the this review


Schedule Background

- The Start and length of run-18 directly impacts the start of run-19 since about 10 month is needed to roll in/out, replace of inner sectors, electronics, and commissioning
- A run-18 installation of a new inner sector will gain experience with methods and installation time required
- Currently run-18 is scheduled for 13 cryo weeks, and is coupled to CA-D LEReC R&D progress

Summary Schedule

The WBS schedule has about 150 tasks

Current schedule has STAR ready for data taking March 1 2019, with ~1.5 month of commissioning. Single sector tested in run-18 Key goal of project is to have upgrade complete for Run-19.

Critical path goes through electronics path a) (SAMPA chip)

b) sector production installation, and testing & commissioning

Key Milestones

For this review the schedule was updated to reflect the actual status of production.

In particular the pad plane production has had issues, and delayed.

Mechanical		
	Pad plane PCB finalized	2/22/2016 (A)
	Pre-production pad plane complete	8/24/2016 (A)
	Strongback drawings finalized	1/28/2016 (A)
	Padplane production complete	12/16/2016
	First strongback ready for inspection	6/3/2016 (A)
	Strongback production complete	7/20/2016 (A)
	First strongbacks joined and shipped	1/30/2017
	MWPC production assembly starts	3/1/2017
	First 2 sectors at BNL	9/6/2017
	Last 6 sectors at BNL	10/3/2018
	Sector testing complete on floor	10/31/2018
Electronics		
	Receive SAMPA prototype	9/19/2016
	Prototype FEE ready for test in run-17	1/15/2017
	FEE preproduction complete	10/30/2017
	FEE production starts	6/12//2018
	RDO prototype complete	11/11/2016
	RDO final design signoff	6/25/2018
	RDO production complete	10/29/2018
	FEE assembled with SAMPA	10/25/2018
	and ready for installation	
Installation		
	Start work of STAR detector	6/16/2017
	in Assembly Hall after run-17	
	Insertion tooling tested and 1 sector	11/3/2017
	replaced	
	Start sector Installation	5/16/18
	East installation complete	9/19/18
	West Sectors installation complete	12/12/2018
	Electronics complete Installed	1/30/2019
	Full system commissioning Complete	3/27/2019

+4 mo.

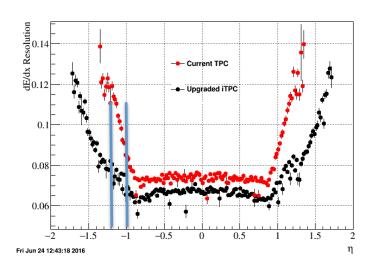
Cost to DOE

		FY16	FY17	FY18	Contingency	Total
Mgt	1.1	54	92	94	45	285
Padplane	1.2	105	0	0	17	122
Mechanics	1.3	865	264	15	238	1381
Installation	1.4	0.0	0.0	136	31	168
Electronics	1.5	19	277	1056	296	1648
Total DOE		1,042	632	1301	628	3603

- The NSF China contribution is not included
- The individual talks with in addition to technical aspects discuss Risk and schedule
- Overall detailed discussion in final talk

Progress

- Completed strongback design
- Initiated and completed strongback production
- Completed padplane design
- Completed padplane pre-production
 - Had production issues at the PCB factory, that had previous made a successful prototype pad plane, and procurement delays
- Initiated production of padplane (delayed)
 - => The pad-plane joining will start later than original planned; schedule shown today includes this delay


KPP/UPP

Parameter	Threshold value (KPP)	Ultimate value (UPP)	
dE/dx resolution for	-	$<6.9\% \eta \le 0.1$	
pions/muons at BES-II		$< 8.0\% \ 1.0 < \eta \le 1.2$	
energies			
Gain at Nominal Voltage	~2000 +-5% at 1150	-	
	Volts		
Tension on Anode Wires	0.50 Newtons ± 0.05	-	
Fully working sectors	22	-	
delivered to BNL or			
repairable at BNL			
HV sections operational	>95%	-	
Compatible with STAR	< 8%deadtime @ 1kHz	< 5% @ 1kHz and 20% @	
DAQ-1000 system	and 30% @ 2 kHz from	2 kHz dead time from	
	iTPC inner sectors	iTPC at BES-II energies	
Operational electronics	Less than 8% dead channels	Less than 3% dead channels	
fraction	per sector	for full system	
Electronic Noise	< 2 ADC counts	-	
Electronics gain	<10%		
Uniformity			

KPP/UPP

- The resolution of the dE/dx is a critical parameter for the performance of the TPC. The upgraded TPC with the inner sectors will provide part of the total dE/dx signal. For |η| > 1 the inner sectors are the dominating contributor to the dE/dx and considerable better than the current TPC. This can be measured with beam and be demonstrated after several months of calibration work.
- The KPP are measurements that needs to be fulfilled to achieve the performance for the UPP
- Will come back to this in more detail

Talks to come

- Strongback and padplanes
- Wirechamber production
- Electronics
- Installation
- Cost, Schedule, Management, KPP/UPP

Documents provided

The list of documents uploaded

- Charge letter, review members
- Agenda
- Technical Design Report (November 2015)
- Link to talks from January 2016 Directors review of iTPC project
- Review report from Directors review in January 2016
- Follow up by STAR to report February 2016
- Project Management Plan (draft with updates following comments from the NP office)
- Shandong University-STAR research agreement
- Risk assessment TPC and iTPC (November 2015)
- Report from "Task Force on RHIC operations" July particular recommendation on page 2-3
- PAC report from June 2016 comments on iTPC page 12-13
- PAC 2015 presentation on iTPC
- PAC 2015 recommendation on iTPC (Page 11-12)
- STAR response to 2015 PAC recommendations submitted to ALD September 2015
- WBS schedule